Почему парусник может плыть против ветра? Как ходить на парусной яхте против ветра? Направления относительно ветра

В качестве вступления. Данная статья появилась на свет с подачи и при моральной поддержке моих давних коллег по общению на форуме сайта «Верфь на столе». Целью её было освещение в ограниченных рамках сайта обширного раздела мореходной практики связанной с изменением парусности судна соразмерно силе и направлению ветра. Именно поэтому описывается лишь процесс взятия на рифы и уборки парусов. Публикация рассчитана на людей, знакомых с основными понятиями и терминами из практики вооружения парусных судов. Дабы не повторяться, намеренно упускаю и сокращаю все, что уже было опубликовано на этом сайте и связанно с этой темой, а попытаюсь обобщить то, что на мой взгляд может показаться интересным пытливому читателю в трудах, опубликованных большей частью в России во второй половине XIX века.

Итак, сначала о ветре. Да, да о нем, ибо, не вдаваясь в теорию и подробные расчеты, именно он и есть суть движущая сила парусного судна. В эпоху расцвета парусного кораблестроения моряки характеризовали силу ветра в зависимости от парусов, которые можно было нести, идя курсом бейдевинд. Это объяснялось тем, что при курсе бейдевинд суда вынуждены носить меньшую парусность. Основные причины заключаются в том, что, во-первых, боковое, наиболее опасное с точки зрения потери рангоута воздействие парусов через обрасопленные реи на мачты и стеньги, поддерживаемые вантами и фордунами более сзади, нежели с боков, оказывается наибольшим, чем при иных курсах; во-вторых, боковая остойчивость корабля существенно меньше продольной; и, в-третьих, сила ветра, воздействующая на корабль равно как и другой движущийся объект, зависит от направления его движения, то есть в бейдевинд она увеличивается, а при попутном ветре уменьшается. Поэтому при одном и том же ветре лежа бейдевинд необходимо было брать у марселей рифы, тогда как на фордевинд можно было нести и брамсели. Исходя из вышесказанного, о ветре говорили бом-брамсельный, брамсельный, марсельный, риф-марсельный и ундер-зейль, когда лежа бейдевинд можно поднять бом-брамсели, или идти под брамселями, или только под марселями или под зарифленными марселями, или нести только нижние паруса. Для более точной характеристики ветра говорили, например, ветер брамсельный тихий, марсельный крепкий, риф-марсельный с порывами и т.д. Под штилем подразумевалось полное безветрие, а под штормом – ветер, при котором держались под глухо зарифленным грот-марселем или только под одними триселями. Позднее перешли к более точному определению силы ветра в баллах по системе Бофорта (табл. 1).

Вычисленная скорость в секунду времени Давление в русских фунтах на фут Баллы, означающие степень силы ветра Название ветров по Бофорту Название ветров по системе Чапмана
10,4 0,28 1 Light air
Весьма слабый
20,8 1,11 2 Light wind
Слабый
31,2 2,49 3 Light breeze
41,6 4,43 4 Moderate breeze
Умеренный
Бом-брамсельный
51,9 6,92 5 Fresch breeze
свежий
Брамсельный
62,3 9,97 6 Strong breeze
Весьма свежий
Марсельный
72,7 13,57 7 Moderate gale
Сильный
Риф-марсельный
83,1 17,72 8 Fresch gale
Весьма сильный
Ундер-зейль
93,5 22,43 9 Strong gale
Крепкий
Полу-шторм
103,9 27,69 10 Heavy gale
Весьма крепкий
Полный шторм
- - 11 Storm
Буря
124,7 39,88 12 Hurricane
Ураган

Соответственно постепенно увеличивающейся силе ветра постепенно уменьшали парусность судна обычно в следующем порядке:

    Убирали брам-стаксели и бом-брамсели с бом-кливером;

    Крепили брамсели или оставляя последние, брали у марселей один риф;

    Брали у марселей второй риф, причем обычно крепили брамсели;

    Брали у марселей третий риф и заменяли кливер фор-стеньги стакселем, при этом кливер старались удерживать как можно дольше;

    Крепили крюйсель, брали последний риф у фор- и грот-марселей, брали один риф у бизани;

    Крепили фор-марсель и брали последний риф у бизани (или ставили штормовую бизань), фор-стеньги стаксель заменяли фока-стакселем.

Нижние паруса рифились обычно в следующей последовательности: вместе с четвертым рифом у марселей брали первый риф у грота, затем второй риф у грота и первый у фока, затем второй у фока и крепили грот или заменяли его грот-триселем, и, в крайнем случае, когда сила ветра и волнения лишали возможности иметь ход и вынуждали держаться под грот-марселем, крепили фок.

При попутных ветрах порядок постепенной уборки парусов предполагался аналогичным вышеизложенному с той лишь разницей, что для уменьшения рыскливости в бакштаг убирали бизань и крепили крюйсель во время взятия третьего рифа у других марселей.

Таким образом, штормовую парусность в бейдевинд на судах с прямым парусным вооружением составляли обычно глухо зарифленный грот-марсель (о парусе говорили что он глухо зарифлен, если у него были взяты все четыре рифа), фока стаксель и зарифленная бизань. При фордевинде это обычно были фор-стеньги стаксель, зарифленные грот-марсель и фок. Грот-марсель необходим как парус, у которого поднимающиеся сзади волны не отнимают много ветра, фок переносит вперед общий центр парусности, а фор-стеньги стаксель для компенсации случайного сильного рыскания.
В качестве наглядного примера привожу литографию Т. Г. Даттона (T G Dutton). На ней (Рис.1) изображен барк Constance, идущий бакштаг при риф-марсельном ветре под тремя парусами: фор-стеньги стакселем, фоком и грот-марселем, взятым на два рифа; команда в это время убирает фор-марсель и грот. При этом соответствующие лисель-спирты приподняты над реями, чтобы освободить место для укладки парусов.

Рис. 1. Барк Constance, идущий бакштаг.

Нельзя не упомянуть, что количество устанавливаемых парусов зависит не только от силы ветра и его направления относительно курса судна, но и от величины волнения, личного опыта капитана, характеристик и свойств конкретного корабля и некоторых других факторов. Немалую роль играет своевременность принятия решения об изменении парусности при изменении силы ветра: преждевременное уменьшение парусности ведет к потере хода, а передержка может сделать уборку парусов и взятие рифов делом трудным и опасным для марсовых.

Для того, чтобы иметь возможность брать паруса на рифы, в процессе отакелаживания в паруса продевают риф-леера, риф-сезни и риф-штерты; ввязывают кренгельсы и шпрюйты, пришивают лапки и обносные сезни, продевают нок-бензеля и штык-болты. Более подробное рассмотрение этого вопроса, несомненно, может представить интерес с точки зрения изготовления моделей кораблей.

Риф-сезни обычно плелись из пяти шкимушек. Их вешали через шест и из длинных концов сплетали плетенку длиною, достаточной для образования двойного очка, которое было необходимо для того, чтобы продетые риф-сезни не могли проскочить сквозь люверс паруса (Рис. 2). Затем сплетенную часть вешали серединой через шест, делали одним концом оборот вокруг шеста для образования двойного очка, соединяли оба конца и продолжали плести сезень из шкимушек обоих половин. (Рис. 3). Концы сезней обвивали парусной ниткой и крыжевали, прошивая насквозь. Длина риф-сезней должна соответствовать толщине рея, а так как риф вязали на рее как можно выше, задние половины сезней обычно делались длиннее передних, исключая сезней четвертого рифа, у которых наоборот передние концы делались длиннее задних, по причине того, что штык-болт четвертого рифа брался, как правило, сзади рея и сам риф обтягивался под низ рея. В процессе отакелаживания риф-сезни продевали, сидя на полу, два человека – по одному с каждой стороны растянутого паруса. Каждый, взяв одну половину риф-сезня, пропускал ее конец в люверс, в то же время принимал от своего коллеги другой конец сезня и пропускал его в очко своей половины. Далее на конец сезня надевался обыкновенный шкив, люди брались каждый за свой конец руками, ногами упирались в шкивы и таким образом плотно обтягивали сезень, надежно закрепляя его в люверсе. При взятии рифов парусину между реем и соответствующим риф-бантом закатывали и получившийся рулон обвязывали риф-сезнями прямым (Рис. 4) или рифовым узлом (Рис. 5).

Рис. 2 - 5. Риф-сезни.

Во второй половине XIX века через люверсы в риф-банте стали проводить один или два риф-леера одним из показанных ниже способов (Рис. 6). Чтобы полуштыки риф-лееров не могли ослабевать, на них клали бензеля из шкимушгара.

Рис. 6 и 7. Проводка риф-леера.

Риф-сезни с клевантами укреплялись на прутковом леере, служащим для привязки паруса, или на специальном леере, укрепленном позади парусного леера, либо обносились вокруг рея (Рис. 8) (на марса-реях их крепили парами – один для 1-го и 3-го рифа, второй для 2-го и 4-го). При взятии такого рифа парусину подбирали до соответствующего риф-банта, конец риф-сезеня пропускали в петлю риф-леера и закрывали на клевант (Рис. 9).

Рис. 8 и 9. Риф-сезни.

При взятии такого рифа мякоть не трогали, а оставляли висеть между парусом и реем.

Риф-сезни триселей и бизани вырубались из белого троса и вшивались в парус несколько иначе. Вот один из способов: делали в парусе дыру в месте продевания риф-сезеня, продевали его и равняли концы по обе стороны паруса. Затем раскручивали сезень вплотную у паруса, чтобы пряди развернулись и образовали калышки петлями. Пришивали эти петли к парусу, а немного ниже простегивали обе части сезня и паруса насквозь. Концы сезней обвивали парусной ниткой и тоже простегивали насквозь для прочности.

Риф-штерты, их так же называли змейками, служили для удобства притягивания паруса к рею при взятии рифов. Они представляли собой тонкую веревку, один конец которой приплесневывался к люверсу верхней шкаторины; другой конец спускался по передней стороне паруса и прихватывался к шейкам соответствующих риф-сезней вплоть до четвертого рифа (Рис. 7). У нижних парусов делали от 6 до 8 змеек, у марселей по 6, (на малых судах по 4), у крюйселей по 4.

ДВИЖУЩАЯ СИЛА ВЕТРА

На сайте NASA опубликованы очень интересные материалы о разных факторах оказывающих влияние на формирование крылом самолета подъемной силы. Там же представлены интерактивные графические модели,которые демонстрируют, что подъемная сила может формироваться и симметричным крылом за счет отклонения потока.

Парус, находясь под углом к воздушному потоку, отклоняет его (рис. 1г). Идущий через «верхнюю», подветренную сторону паруса, воздушный поток проходит более длинный путь и, в соответствии с принципом неразрывности потока, движется быстрее, чем с наветренной, «нижней» стороны. Результат - давление с подветренной стороны паруса меньше, чем с наветренной стороны.

При движении курсом фордевинд, когда парус установлен перпендикулярно к направлению ветра, степень увеличения давление с наветренной стороны больше, чем степень понижения давления с подветренной стороны, другими словами ветер больше толкает яхту, чем тянет. По мере того, как яхта будет поворачивать острее к ветру, это соотношение будет меняться. Так, если ветер дует перпендикулярно курсу яхты, увеличение давления на парус с наветренной стороны оказывает меньшее влияние на скорость, чем снижение давления с подветренной стороны. Другими словами парус больше тянет яхту, чем толкает.

Движение яхты происходи благодаря тому, что ветер взаимодействует с парусом. Анализ этого взаимодействия приводит к неожиданным, для многих новичков, результатам. Оказывается, что максимальная скорость достигается, вовсе не когда ветер дует точно сзади, а пожелание «попутного ветра» несет в себе совершенно неожиданный смысл.

Как парус, так и киль, при взаимодействии с потоком, соответственно, воздуха или воды, создают подъемную силу, следовательно, для оптимизации их работы можно применить теорию крыла.

ДВИЖУЩАЯ СИЛА ВЕТРА

Воздушный поток обладает кинетической энергией и, взаимодействуя с парусами, способен двигать яхту. Работа, как паруса, так и крыла самолета, описывается законом Бернулли, согласно которому увеличение скорости потока приводит к уменьшению давления. При перемещении в воздушной среде, крыло разделяет поток. Часть его обходит крыло сверху, часть снизу. Крыло самолета спроектировано так, что воздушный поток, проходящий над верхней стороной крыла движется быстрее, чем поток, который проходит под нижней частью крыла. Результат - давление над крылом значительно ниже, чем под. Разница давления и есть подъемная сила крыла (рис. 1а). Благодаря сложной форме, крыло способно генерировать подъемную силу даже в том случае, когда рассекает поток, который движется параллельно плоскости крыла.

Парус может двигать яхту только в том случае, если находится под некоторым углом к потоку и отклоняет его. Дискуссионным остается вопрос о том, какая часть подъемной силы связана с эффектом Бернулли, а какая является результатом отклонения потока. Согласно классической теории крыла подъемная сила возникает исключительно в результате разницы скоростей потока над и под ассиметричным крылом. Вместе с тем хорошо известно, что и симметричное крыло способно создавать подъемную силу, если установлено под определенным углом к потоку (рис. 1б). В обоих случаях угол между линией соединяющей переднюю и заднюю точки крыла и направлением потока, называется углом атаки.

Подъемная сила увеличивается с увеличением угла атаки, однако эта зависимость работает только при небольших значениях этого угла. Как только угол атаки превышает некий критический уровень и происходит срыв потока, на верхней поверхности крыла образуются многочисленные вихри, а подъемная сила резко уменьшается (рис. 1в).

Яхтсмены знают, что фордевинд далеко не самый быстрый курс. Если ветер той же силы дует под углом 90 градусов к курсу, яхта движется намного быстрее. На курсе фордевинд сила, с которой ветер давит на парус, зависит от скорости яхты. С максимальной силой ветер давит на парус стоящей без движения яхты (рис. 2а). По мере увеличения скорости давление на парус падает и становится минимальный, когда яхта достигает максимальной скорости (рис. 2б). Максимальная скорость на курсе фордевинд всегда меньше скорости ветра. Причин тому, несколько: во-первых, трение, при любом движении некоторая часть энергии расходуется на преодоление различных сил препятствующих движению. Но главное то, что сила, с которой ветер давит на парус, пропорциональна квадрату скорости вымпельного ветра, а скорость вымпельного ветра на курсе фордевинд равна разнице скорости истинного ветра и скорости яхты.

Курсом галфвинд (под 90º к ветру) парусные яхты способны двигаются быстрее ветра. В рамках этой статьи мы не будем обсуждать особенности вымпельного ветра, отметим только, что на курсе галфвинд, сила, с которой ветер давит на паруса, в меньшей степени зависит от скорости яхты (рис. 2в).

Основным фактором, который препятствует увеличению скорости, является трение. Поэтому парусники с небольшим сопротивлением движению способны достигать скорости, намного превышающей скорость ветра, но не на курсе фордевинд. Например, буер, за счет того, что коньки обладают ничтожным сопротивлением скольжения, способен разогнаться до скорости 150 км/ч при скорости ветра 50 км/ч и даже меньше.

The Physics of Sailing Explained: An Introduction

ISBN 1574091700, 9781574091700

Курсы относительно ветра. Современные яхты и парусные лодки в большинстве случаев оснащаются косыми парусами. Отличительной их особенностью является то, что основная часть паруса или весь он располагается позади мачты или штага. Благодаря тому, что передняя кромка паруса туго натянута вдоль мачты (или сама по себе), парус обтекается потоком воздуха без заполаскивания при его расположении под довольно острым углом к ветру. Благодаря этому (и при соответствующих обводах корпуса) судно приобретает способность двигаться под острым углом к направлению ветра.

На рис. 190 представлено положение парусника при различных курсах по отношению к ветру. Прямо против ветра обычный парусник идти не может - парус в этом случае не создает силы тяги, способной преодолеть сопротивление воды и воздуха. Лучшие гоночные яхты в средний ветер могут идти в бейдевинд под углом 35-40° к направлению ветра; обычно же этот угол не меньше 45°. Поэтому к цели, расположенной прямо против ветра, парусник вынужден добираться в лавировку - попеременно правым и левым галсом. Угол между курсами судна на том и другом галсе называется лавировочным углом , а положение судна носом прямо против ветра - левентиком . Способность судна лавировать и с максимальной скоростью продвигаться в направлении прямо против ветра является одним из основных качеств парусника.

Курсы от крутого бейдевинда до галфвинда, когда ветер дует под 90° к ДП судна, называются острыми ; от галфвинда до фордевинда (ветер дует прямо в корму) - полными . Различают крутой (курс относительно ветра 90-135°) и полный (135-180°) бакштаги, так же как и бейдевинд (соответственно 40-60° и 60-80° к ветру).

Рис. 190. Курсы парусного судна относительно ветра.

1 - крутой бейдевинд; 2 - полный бейдевинд; 3 - галфвинд; 4 - бакштаг; 5 - фордевинд; 6 - левентик.

Вымпельный ветер. Поток воздуха, который обтекает паруса яхты, не совпадает с направлением истинного ветра (относительно суши). Если судно имеет ход, то появляется встречный поток воздуха, скорость которого равна скорости судна. При наличии ветра его направление относительно судна за счет встречного потока воздуха отклоняется определенным образом; изменяется и величина скорости. Таким образом, на паруса попадает суммарный поток, называемый вымпельным ветром . Направление и скорость его можно получить, сложив векторы истинного ветра и встречного потока (рис. 191).

Рис. 191. Вымпельный ветер на различных курсах яхты относительно ветра.

1 - бейдевинд; 2 - галфвинд; 3 - бакштаг; 4 - фордевинд.

v - скорость движения яхты; v и - истинная скорость ветра; v в - скорость вымпельного ветра.

Очевидно, что на курсе бейдевинд скорость вымпельного ветра имеет наибольшую величину, а на фордевинде - наименьшую, так как в последнем случае скорости обоих потоков направлены в прямо противоположные стороны.

Паруса на яхте всегда устанавливают, ориентируясь по направлению вымпельного ветра. Заметим, что скорость яхты растет не в прямой пропорциональности от скорости ветра, а гораздо медленнее. Поэтому при усилении ветра угол между направлением истинного и вымпельного ветра уменьшается, а в слабый ветер скорость и направление вымпельного ветра более заметно отличается от истинного.

Поскольку силы, действующие на парус как на крыло, растут пропорционально квадрату скорости обтекающего потока, у парусников с минимальным сопротивлением движению возможно явление «саморазгона», при котором их скорость превышает скорость ветра. К таким типам парусников относятся ледовые яхты - буера, яхты на подводных крыльях, колесные (пляжные) яхты и проа - узкие однокорпусные суда с поплавком-аутригером. На некоторых из этих типов судов зафиксированы скорости, втрое превышающие скорость ветра. Так, наш национальный рекорд скорости на буере равен 140 км/ч, а установлен он при ветре, скорость которого не превышала 50 км/ч. Попутно отметим, что абсолютный рекорд скорости под парусом на воде существенно ниже: он установлен в 1981 г. на специально построенном двухмачтовом катамаране «Кроссбау-II» и равен 67,3 км/ч.

Обычные парусные суда, если они не рассчитаны на глиссирование, в редких случаях превышают предел скорости водоизмещающего плавания, равный v = 5,6 √L км/ч (см. главу I).

Силы, действующие на парусное судно. Существует принципиальное различие между системой внешних сил, действующих на парусное судно, и судно, приводимое в движение механическим двигателем. На моторном судне упор движителя - гребного винта или водомета - и сила сопротивления воды его движению действуют в подводной части, располагаясь в диаметральной плоскости и на незначительном расстоянии друг от друга по вертикали.

На паруснике движущая сила приложена высоко над поверхностью воды и, следовательно, над линией действия силы сопротивления. Если судно движется под углом к направлению ветра - в бейдевинд, то его паруса работают по принципу аэродинамического крыла, рассмотренному в главе II. При обтекании паруса потоком воздуха на его подветренной (выпуклой) стороне создается разрежение, на наветренной - повышенное давление. Сумму этих давлений можно привести к результирующей аэродинамической силе A (см. рис. 192), направленной примерно перпендикулярно хорде профиля паруса и приложенной в центре парусности (ЦП) высоко над поверхностью воды.

Рис. 192. Силы, действующие на корпус и паруса.

Согласно третьему закону механики, при установившемся движении тела по прямой каждой силе, приложенной к телу (в данном случае - к парусам, связанным с корпусом яхты через мачту, стоячий такелаж и шкоты), должна противодействовать равная ей по величине и противоположно направленная сила. На паруснике этой силой является результирующая гидродинамическая сила H , приложенная к подводной части корпуса (рис. 192). Таким образом, между силами A и H существует известное расстояние - плечо, вследствие чего образуется момент пары сил, стремящийся привести во вращение судно относительно оси, определенным образом ориентированной в пространстве.

Для упрощения явлений, возникающих при движении парусных судов, гидро- и аэродинамическую силы и их моменты раскладывают на составляющие, параллельные главным координатным осям. Руководствуясь третьим законом Ньютона, можно выписать попарно все составляющие этих сил и моментов:

A - аэродинамическая результирующая сила;
T - сила тяги парусов, движущая судно вперед:
D - кренящая сила или сила дрейфа;
A v - вертикальная (дифферентующая на нос) сила;
P - сила массы (водоизмещение) судна;
M д - дифферентующий момент;
M кр - кренящий момент;
M п - приводящий к ветру момент;
H - гидродинамическая результирующая сила;
R - сила сопротивления воды движению судна;
R д - боковая сила или сила сопротивления дрейфу;
H v - вертикальная гидродинамическая сила;
γ·V - сила плавучести;
M l - момент сопротивления дифференту;
M в - восстанавливающий момент;
M у - уваливающий момент.

Для того чтобы судно устойчиво шло по курсу, каждая пара сил и каждая пара моментов должны быть равны друг другу. Например, сила дрейфа D и сила сопротивления дрейфу R д создают кренящий момент M кр, который должен быть уравновешен восстанавливающим моментом M в или моментом поперечной остойчивости. Этот момент образуется благодаря действию сил массы P и плавучести судна γ·V , действующих на плече l . Эти же силы образуют момент сопротивления дифференту или момент продольной остойчивости M l , равный по величине и противодействующий дифферентующему моменту M д. Слагаемыми последнего являются моменты пар сил T - R и A v - H v .

Таким образом, движение парусного судна косым курсом к ветру сопряжено с креном и дифферентом, а боковая сила D , кроме крена, вызывает еще и дрейф - боковой снос, поэтому любое парусное судно движется не строго в направлении ДП, как судно с механическим двигателем, а с небольшим углом дрейфа β. Корпус парусника, его киль и руль становятся подводным крылом, на которое набегает встречный поток воды под углом атаки, равным углу дрейфа. Именно это обстоятельство обусловливает образование на киле яхты силы сопротивления дрейфу R д, которая является компонентом подъемной силы.

Устойчивость движения и центровка парусного судна. Вследствие крена сила тяги парусов T и сила сопротивления R оказываются действующими в разных вертикальных плоскостях. Они образуют пару сил, приводящих судно к ветру - сбивающих с прямолинейного курса, которым оно следует. Этому препятствуют момент второй пары сил - кренящей D и силы сопротивления дрейфу R д, а также небольшая по величине сила N на руле, которую необходимо прикладывать для того, чтобы корректировать движение яхты по курсу.

Очевидно, что реакция судна на действие всех этих сил зависит как от их величины, так и от соотношения плеч a и b , на которые они действуют. При увеличении крена плечо приводящей пары b также увеличивается, а величина плеча уваливающей пары a зависит от взаимного расположения центра парусности (ЦП - точки приложения результирующей аэродинамических сил к парусам) и центра бокового сопротивления (ЦБС - точки приложения результирующей гидродинамических сил к корпусу яхты).

Точное определение положения этих точек является довольно сложной задачей, особенно если учесть, что оно изменяется в зависимости от многих факторов: курса судна относительно ветра, покроя и настройки парусов, крена и дифферента яхты, формы и профиля киля и руля и т. п.

При проектировании и перевооружении яхт оперируют с условными ЦП и ЦБС, считая их расположенными в центрах тяжести плоских фигур, которые представляют собой паруса, поставленные в ДП, и очертания подводной части ДП с килем, плавниками и рулем (рис. 193). Центр тяжести треугольного паруса, например, находится на пересечении двух медиан, а общий центр тяжести двух парусов располагается на отрезке прямой, соединяющей ЦП обоих парусов, и делит этот отрезок обратно пропорционально их площади. Если парус имеет четырехугольную форму, то его площадь делят диагональю на два треугольника и получают ЦП как общий центр этих треугольников.

Рис. 193. Определение условного центра парусности яхты.

Положение ЦБС можно определить, уравновешивая на острие иголки шаблон подводного профиля ДП, вырезанный из тонкого картона. Когда шаблон расположится горизонтально, игла будет находиться в точке условного ЦБС. Однако этот способ более или менее применим для судов с большой площадью подводной части ДП - для яхт традиционного типа с длинной килевой линией, судовых шлюпок и т. п. На современных яхтах, обводы которых проектируются на основе теории крыла, основную роль в создании силы сопротивления дрейфу играют плавниковый киль и руль, устанавливаемый обычно отдельно от киля. Центры гидродинамических давлений на их профилях могут быть найдены достаточно точно. Например, для профилей с относительной толщиной δ/b около 8 % эта точка находится на расстоянии около 26 % хорды b от входящей кромки.

Однако корпус яхты определенным образом влияет на характер обтекания киля и руля, причем это влияние изменяется в зависимости от крена, дифферента и скорости судна. В большинстве случаев на острых курсах к ветру истинный ЦБС перемещается вперед по отношению к центру давления, определенному для киля и руля как для изолированных профилей. Вследствие неопределенности в расчете положения ЦП и ЦБС конструкторы при разработке проекта парусных судов располагают ЦП на некотором расстоянии a - опережении - впереди ЦБС. Величина опережения определяется статистически, из сравнения с хорошо зарекомендовавшими себя яхтами, которые имеют близкие к проекту обводы подводной части, остойчивость и парусное вооружение. Опережение задается обычно в процентах длины судна по ватерлинии и составляет для судна, оснащенного бермудским шлюпом, 15-18 % L . Чем меньше остойчивость яхты, тем больший крен она получит под действием ветра и тем большее необходимо опережение ЦП перед ЦБС.

Точная корректировка относительного положения ЦП и ЦБС возможна при испытаниях яхты на ходу. Если судно стремится увалиться под ветер, особенно в средний и свежий ветер, то это является большим дефектом центровки. Дело в том, что киль отклоняет стекающий с него поток воды ближе к ДП судна. Поэтому если руль стоит прямо, то его профиль работает с заметно меньшим углом атаки, чем киль. Если же для компенсации тенденции яхты к уваливанию руль приходится перекладывать на ветер, то образуемая на нем подъемная сила оказывается направленной в подветренную сторону - туда же, что и сила дрейфа D на парусах. Следовательно, судно будет иметь повышенный дрейф.

Иное дело легкая тенденция яхты приводиться. Переложенный на 3-4° в подветренную сторону руль работает с таким же или несколько большим углом атаки, что и киль, и эффективно участвует в сопротивлении дрейфу. Поперечная сила H , возникающая на руле, вызывает значительное смещение общего ЦБС к корме при одновременном уменьшении угла дрейфа. Однако, если для удержания яхты на курсе бейдевинд приходится постоянно перекладывать руль в подветренную сторону на больший чем 2-3° угол, необходимо перенести ЦП вперед или сместить назад ЦБС, что сложнее.

На построенной яхте перенести ЦП вперед можно, наклонив вперед мачту, сместив ее вперед (если позволяет конструкция степса), укоротив грот по нижней шкаторине, увеличив площадь основного стакселя. Для перемещения ЦБС назад требуется установить плавник перед рулем или же увеличить размеры пера руля.

Для устранения тенденции яхты к уваливанию необходимо применить противоположные меры: перенести ЦП назад или сместить вперед ЦБС.

Роль составляющих аэродинамической силы в создании тяги и дрейфа. Современная теория работы косого паруса основывается на положениях аэродинамики крыла, элементы которой были рассмотрены в главе II. При обтекании паруса, поставленного под углом атаки α к вымпельному ветру, потоком воздуха, на нем создается аэродинамическая сила A , которую можно представить в виде двух составляющих: подъемной силы Y , направленной перпендикулярно потоку воздуха (вымпельному ветру), и лобового сопротивления X - проекции силы A на направление потока воздуха. Эти силы используются при рассмотрении характеристик паруса и всего парусного вооружения в целом.

Одновременно силу A можно представить в виде двух других составляющих: силы тяги T , направленной по оси движения яхты, и перпендикулярной ей силы дрейфа D . Напомним, что направление движения парусника (или путь) отличается от его курса на величину угла дрейфа β, однако при дальнейшем анализе этим углом можно пренебречь.

Если на курсе бейдевинд удается увеличить подъемную силу на парусе до величины Y 1 , а лобовое сопротивление останется неизменным, то силы Y 1 и X , сложенные по правилу сложения векторов, образуют новую аэродинамическую силу A 1 (рис. 194, а ). Рассматривая ее новые составляющие T 1 и D 1 , можно заметить, что в данном случае с увеличением подъемной силы увеличиваются и сила тяги и сила дрейфа.

Рис. 194. Роль подъемной силы и лобового сопротивления в создании движущей силы.

При аналогичном построении можно убедиться, что при увеличении лобового сопротивления на курсе бейдевинд сила тяги уменьшается, а сила дрейфа увеличивается. Таким образом, при плавании в бейдевинд решающую роль в создании тяги парусов играет подъемная сила паруса; лобовое сопротивление должно быть минимальным.

Отметим, что на курсе бейдевинд вымпельный ветер имеет наивысшую скорость, поэтому обе составляющие аэродинамической силы Y и X имеют достаточно большую величину.

На курсе галфвинд (рис. 194, б ) подъемная сила является силой тяги, а лобовое сопротивление - силой дрейфа. Увеличение лобового сопротивления паруса на величине силы тяги не сказывается: увеличивается только сила дрейфа. Однако поскольку скорость вымпельного ветра на галфвинде снижается по сравнению с бейдевиндом, дрейф на ходовых качествах судна сказывается уже в меньшей степени.

На курсе бакштаг (рис. 194, в ) парус работает на больших углах атаки, при которых подъемная сила оказывается значительно меньше лобового сопротивления. Если увеличить лобовое сопротивление, то тяга и сила дрейфа также увеличатся. При возрастании подъемной силы тяга увеличивается, а сила дрейфа уменьшается (рис. 194, г ). Следовательно, на курсе бакштаг увеличение и подъемной силы и (или) лобового сопротивления повышают тягу.

При курсе фордевинд угол атаки паруса близок к 90°, поэтому подъемная сила на парусе равна нулю, а лобовое сопротивление направлено по оси движения судна и является силой тяги. Сила дрейфа равна нулю. Следовательно, на курсе фордевинд для увеличения тяги парусов желательно увеличивать их лобовое сопротивление. На гоночных яхтах это делается путем постановки дополнительных парусов - спинакера и блупера, имеющих большую площадь и плохо обтекаемую форму. Отметим, что на курсе фордевинд на паруса яхты действует вымпельный ветер минимальной скорости, что обусловливает сравнительно умеренные силы на парусах.

Сопротивление дрейфу. Как было показано выше, сила дрейфа зависит от курса яхты относительно ветра. При плавании в крутой бейдевинд она примерно втрое превышает силу тяги T , движущую судно вперед; на галфвинде обе силы примерно равны; на крутом бакштаге тяга паруса оказывается в 2-3 раза больше силы дрейфа, а на чистом фордевинде сила дрейфа отсутствует вообще. Следовательно, для того чтобы парусник успешно продвигался вперед курсами от бейдевинда до галфвинда (под углом 40-90° к ветру), оно должно обладать достаточным боковым сопротивлением дрейфу, намного превышающим сопротивление воды движению яхты по курсу.

Функцию создания силы сопротивления дрейфу на современных парусных судах выполняют в основном плавниковые кили или шверты и рули. Механика возникновения подъемной силы на крыле симметричного профиля, каковыми являются кили, шверты и рули, была рассмотрена в главе II (см. стр. 67). Отметим, что величина угла дрейфа современных яхт - угол атаки профиля киля или шверта - редко превышает 5°, поэтому, проектируя киль или шверт, необходимо выбрать его оптимальные размеры, форму и профиль сечения в расчете на получение максимальной подъемной силы при минимальном лобовом сопротивлении именно на малых углах атаки.

Испытания аэродинамических симметричных профилей показали, что более толстые профили (с большей величиной отношения толщины сечения t к его хорде b ) дают бо́льшую подъемную силу, чем тонкие. Однако на малых скоростях движения такие профили обладают более высоким лобовым сопротивлением. Оптимальные результаты на парусных яхтах можно получить при толщине киля t /b = 0,09÷0,12, так как подъемная сила на таких профилях мало зависит от скорости судна.

Максимальная толщина профиля должна располагаться на расстоянии от 30 до 40 % хорды от передней кромки профиля киля. Хорошими качествами обладает также профиль NACA 664‑0 с максимальной толщиной, расположенной на расстоянии 50 % хорды от носика (рис. 195).

Рис. 195. Профилированный киль-плавник яхты.

Ординаты рекомендуемых профилей сечений яхтенных килей и швертов
Отстояние от носика x , % b
2,5 5 10 20 30 40
Ординаты y , % b
NACA-66; δ = 0,05 2,18 2,96 3,90 4,78 5,00 4,83
2,00 2,60 3,50 4,20 4,40 4,26
- 3,40 5,23 8,72 10,74 11,85
Профиль; относительная толщина δ Отстояние от носика x , % b
50 60 70 80 90 100
Ординаты y , % b
NACA-66; δ = 0,05 4,41 3,80 3,05 2,19 1,21 0,11
Профиль для швертов; δ = 0,04 3,88 3,34 2,68 1,92 1,06 0,10
Киль яхты NACA 664-0; δ = 0,12 12,00 10,94 8,35 4,99 2,59 0

Для легких гоночных швертботов, способных выходить на режим глиссирования и развивать высокие скорости, используют шверты и рули с более тонким профилем (t /b = 0,044÷0,05) и геометрическим удлинением (отношением углубления d к средней хорде b ср) до 4.

Удлинение килей современных килевых яхт составляет от 1 до 3, рулей - до 4. Чаще всего киль имеет вид трапеции с наклонной передней кромкой, причем угол наклона оказывает определенное влияние на величину подъемной силы и лобового сопротивления киля. При удлинении киля около λ = 0,6 может быть допущен наклон передней кромки до 50°; при λ = 1 - около 20°; при λ > 1,5 оптимальным является киль с вертикальной передней кромкой.

Суммарная площадь киля и руля для эффективного противодействия дрейфу принимается обычно равной от 1 / 25 до 1 / 17 площади основных парусов.

Вымпельный ветер

Попробуем понять за счет, каких сил, и на основании каких принципов происходит движение парусного судна под действием ветра. Рассмотрим только косые паруса, как наиболее часто встречающиеся в настоящее время. Косое парусное вооружение бермудского типа это основное вооружение большинства современных как одномачтовых, так и двухмачтовых судов. Все спортивные и круизные одномачтовые яхты так же вооружаются бермудским шлюпом.

Это вооружение дает максимальные возможности по выбору курса относительно направления ветра и требует существенно меньшего экипажа для управления парусами и не требует такой высокой его выучки как в случае применения прямого парусного вооружения.

Замечательной особенностью косого паруса является его способность создавать тяговое усилие на курсах до 30-40 градусов к направлению ветра.

При этом нужно учитывать, что парусное судно движется относительно вымпельного или кажущегося ветра, а не относительно истинного или метеорологического ветра.

При движении любого объекта в воздушной среде возникает поток набегающего воздуха, скорость которого определяется скоростью движения объекта. Соответственно, даже при полном отсутствии ветра (штиль) наблюдатель, находящийся на судне будет ощущать ветер равный скорости судна - курсовой ветер, который будет по величине равен скорости судна, а по направлению противоположен направлению движения судна. Таким образом, парусное судно, при своем движении испытывает действие двух потоков воздуха:

Действие потока, вызванного наличием истинного ветра;

Действие потока, вызванного движением судна – курсового ветра.

Для определения результирующего потока воздуха, ощущаемого наблюдателем, находящимся на движущемся объекте, необходимо произвести векторное сложение потоков. Результирующий вектор и будет по скорости и направлению, ощущаемым или кажущимся ветром, который называется вымпельным ветром. Этот ветер и будет рассматриваться как ветер, действующий на паруса судна при его движении (рис 1).

Этот ветер является единственным ветром, с которым взаимодействуют паруса, а разложение его на истинный ветер и курсовой является результатом анализа исходных воздушных потоков.

Вымпельный ветер является величиной переменной даже при стабильном по скорости и направлению истинном ветре, так как его скорость и направление зависят от скорости и направления движения судна. Для простоты рассуждений рассмотрим случай, при котором рис. 1.

истинный ветер направлен под прямым углом к направлению движения судна и скорость истинного ветра равна скорости судна (рис. 2). Из рисунка видно, что при движении под углом 90 градусов к истинному ветру судно движется под углом 45 градусов к вымпельному ветру.

истинный В соответствие с изложенным выше, можно

ветер вымпельный ветер утверждать, что два судна, движущиеся од-

ним и тем же курсом, при одних и тех же ветровых

условиях, но с разными скоростями относительно воды будут двигаться под разными углами к вымпельному ветру. Судно, движущееся с более высокой скоростью, будет идти острее к вымпель-ному ветру, сохраняя тот же курсовой угол относительно истинного ветра. При этом, ветро- указатели на то пах мачт этих судов будут находить-

курсовой ветер ся под разными углами к ДП судна, фиксируя направ-

рис. 2 ление вымпельного ветра каждого из судов (рис. 3).

судно 1 судно 2

Из рисунка видно, что судно, идущее с большей скоростью, идет под меньшим углом к вымпельному ветру. Из этого можно сделать вывод о том, что при увеличении скорости движения судна вымпельный ветер заходит (уменьшается угол между направлением движения судна и вымпельным ветром). При дальнейшем увеличении скорости судна (лучше обводы, меньше трение, эффективнее работают паруса, другая конструкция корпуса судна) угол между направлением движения судна и вымпельным ветром станет меньше минимального лавировочного угла (минимального угла между направлением движения судна и вымпельным ветром, при котором сохраняется возможность эффективной работы парусов). После этого судно, имеющее большую скорость, будет вынуждено увалиться (увеличить угол между направлением движения судна и направлением вымпельного ветра) до восстановления минимального лавировочного угла. Этим объясняются разные углы выхода на ветер (угол между направлением истинного ветра и направлением движения судна). При этом, скорость выхода на ветер (скорость сближения с точкой прихода, находящейся на ветре) может быть больше у судна с большим углом выхода на ветер, но и большей скоростью движения. В качестве примера рассмотрим скорость выхода на ветер килевой яхты, спортивного швертбота и катамарана (рис. 4).

Острее к ветру идет килевая яхта, имеющая наименьшую, из этих судов, скорость движения. За ней идет спортивный швертбот и наименее остро к истинному ветру идет спортивный катамаран. Каждое из этих судов идет под одним и тем же углом к вымпельному ветру, но под разными углами к истинному ветру. Но, при этом, самая высокая скорость выхода на ветер будет у спортивного катамарана. Из рассмотрения треугольника скоростей становится понятной возможность приводится к истинному ветру на порывах ветра (кратковременное ускорение ветра). В порыве скорость истинного ветра возрастает, а скорость судна остается, в течение какого-то времени, прежней. Вымпельный ветер отходит и появляется возможность привестись и восстановить лавировочный угол относительно вымпельного ветра (рис. 5)

рис. 4

Килевая яхта

швертбот

Катамаран


Через некоторое время скорость судна возрастет, и оно будет вынуждено увалиться до прежнего курса относительно истинного ветра, сохраняя угол относительно вымпельного ветра. Однако, увеличение скорости судна возможно до достижения скорости, предельной для движения судна в водоизмещающем режиме (скорость судна в водоизмещающем режиме, выраженная в узлах, не может превышать длину судна, выраженную в метрах). Следовательно, при дальнейшем увеличении скорости ветра скорость судна не будет возрастать и курс судна относительно истинного ветра может быть острее.

Очень важным является наличие течений в районе плавания судна, с точки зрения поведения вымпельного ветра. При плавании на течении скорость судна векторно складывается со скоростью течения. В результате меняется абсолютная скорость судна и происходит изменение скорости и направления вымпельного ветра. При движении с попутным течением вымпельный ветер заходит, а при движении со встречным течением отходит. Следовательно, при попутном течении лавировочный угол увеличивается, а при встречном ветре – уменьшается. При этом скорость выхода яхты на ветер сохраняется практически неизменной. При направлении течения по направлению или против направления истинного ветра происходит изменение скорости истинного ветра. При однонаправленных ветре и течении вымпельный ветер заходит, а при разнонаправленных отходит, в силу увеличения скорости истинного ветра. Взаимодействие ветра и течения менят лавировочные углы судна относительно истинного ветра.

Современное навигационное оборудование дает возможность получать информацию не только о направлении и силе вымпельного ветра, но и о силе и направлении истинного ветра, путем пересчета треугольника скоростей (рис. 1). GPS дает информацию о скорости и направлении движения судна, а анеморумбометр о скорости и направлении вымпельного ветра. Путем пересчета треугольника скоростей система получает информацию о скорости и направлении истинного ветра.

Понимание поведения вымпельного ветра является ключевым для планирования маршрута движения судна, при известном направлении и скорости истинного ветра и фактической скорости парусного судна.

Однако для тихоходных судов угол между направлением истинного и вымпельного ветра незначителен и можно, с определенной степенью точности, утверждать, что этот угол находится в пределах 10-20 градусов.

Воздействие ветра на корабль определяется его на­правлением и силой, формой и размерами площади па­русности корабля, расположением центра парусности, значениями осадки, крена и дифферента.

Действие ветра в пределах курсовых углов 0-110° вызывает потерю скорости, а при больших курсовых уг­лах и силе ветра не свыше 3-4 баллов - некоторое ее приращение.

Действие ветра в пределах 30-120° сопровождается дрейфом и ветровым креном.

На движущийся корабль действует относительный (кажущийся) ветер, который связан с истинным следую­щими отношениями (рис. 7.1)(2):

Где Vи - скорость истинного ветра, м/с;

VK-скорость кажущегося ветра, м/с;

V0 - скорость хода корабля, м/с;

βо-угол дрейфа корабля, град.

Yk - угол кажущегося ветра;

Yи-угол истинного ветра.

Удельное давление ветра на корабль в кгс/м&sub2; рассчи­тывается по формуле

Где W - скорость ветра, м/с.


Рис. 7.1. Зависимость истинного и кажущегося ветра


Рис. 7.2. Действие кренящего момента

Так, при урагане, когда скорость ветра достигает 40-50 м/с, величина ветровой нагрузки достигает 130- 200 кгс/м2.

Полное давление ветра на корабль определяется из выражения P = pΩ, где &Omrga; - площадь парусности корабля.

Величина кренящего момента Мкр (рис. 7.2) в кгс м для случая установившегося движения и действия силы давления ветра Р, перпендикулярной ДП корабля, опре­деляется из выражения

Где zn - ордината центра парусности, м;

Т - средняя осадка корабля, м.

Волнение моря оказывает наиболее существенное вли­яние на корабль. Оно сопровождается действием на кор­пус значительных динамических нагрузок и качкой ко­рабля. При плавании на волнении увеличивается сопро­тивление корпуса корабля и ухудшаются условия совместной работы винтов, корпуса и главных двигателей.


Рис. 7.3. Элементы волн

В результате снижается скорость, увеличивается нагрузка на главные машины, повышается расход топлива и умень­шается дальность плавания корабля. Форма и размеры волн характеризуются следующими элементами (рис. 7.3):

Высота волны h - расстояние по вертикали от вер­шины до подошвы волны;

Длина волны λ - расстояние по горизонтали между двумя соседними гребнями или подошвами;

Период волны t - промежуток времени, в течение которого волна проходит расстояние, равное своей дли­не(3);

Скорость волны С - расстояние, проходимое вол­ной в единицу времени.

По происхождению волны подразделяются на ветро­вые, приливо-отливные, анемобарические, волны земле­трясения (цунами) и корабельные. Наиболее распространенными являются ветровые волны. Различают три типа волнения: ветровое, зыбь и смешанное. Ветровое волне­ние - развивающееся, оно находится под непосредствен­ным воздействием ветра в отличие от зыби, представляю­щей собой инерционное волнение, или волнение, вызванное штормовым ветром, дующим в удаленном районе. Профиль ветровой волны не симметричен. Ее подветрен­ный склон круче, чем наветренный. На вершинах ветро­вых волн образуются гребни, верхушки которых под дей­ствием ветра заваливаются, образуя пену (барашки), а при сильном ветре срываются. Направление ветра и на­правление ветровых волн в открытом море, как правило, совпадают или разнятся на 30-40°. Размеры ветровых волн зависят от скорости ветра и продолжительности его воздействия, длины пути ветро­вых потоков над водной поверхностью и глубины данного района (табл. 7.1).

ТАБЛИЦА 7.1. МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ ЭЛЕМЕНТОВ ВОЛН ДЛЯ ГЛУБОКОГО МОРЯ (Н/Λ > 1/2)

Наиболее интенсивный рост волны наблюдается при отношении C/W < 0,4-0,5. Дальнейшее увеличение этого отношения сопровождается уменьшением роста волн. По­этому волны опасны не в момент наибольшего ветра, а при последующем его ослаблении.

Для приближенных расчетов средней высоты волн ус­тановившегося океанского волнения пользуются форму­лами:

При ветре до 5 баллов

При ветре свыше 5 баллов

Где Б - сила ветра в баллах по шкале Бофорта (§ 23.3).

В условиях развитого волнения имеет место интерфе­ренция отдельных волн (до 2% общего количества и бо­лее), которые достигают максимального развития и пре­вышают среднюю высоту волн в два-три раза. Такие вол­ны особенно опасны.

Наложение одной волновой системы на другую наибо­лее интенсивно происходит при изменении направления ветра, частом чередовании штормовых ветров и перед фронтом тропических циклонов(4).

Энергия волн развитого волнения исключительно вели­ка. Для корабля, лежащего в дрейфе, динамическое воз­действие волн может быть определено из выражения р=0,1 τ² где τ - истинный период волны, с.

Так, для периодов волн около 6-10 с величина Р мо­жет достигать внушительных значений (3,6-10 т/м²).

При движении корабля курсом против волны динами­ческое воздействие волн будет возрастать пропорциональ­но квадрату скорости корабля, выраженной в метрах в се­кунду.

Длина волны в метрах, скорость в метрах в секунду и период в секундах связаны между собой следующими соотношениями:

Практически движущийся корабль встречает не истин­ный, а относительный (кажущийся) период волны τ", ко­торый определяется из выражения

Где а - курсовой угол фронта гребня волны, измеренный по любому борту.

Плюс относится к случаю движения против волны, минус - по волне.

При изменении курса корабль располагается относи­тельно приведенной длины волны λ":

Характер качки корабля имеет сложную зависимость между элементами волн (h, λ, τ и С) и элементами ко­рабля (L, D, Т1,2 и δ).

Безопасность корабля с точки зрения остойчивости определяется не только его конструкцией и распределе­нием грузов, но и курсом, а также скоростью. В условиях развитого волнения непрерывно меняется форма дейст­вующей ватерлинии. Соответственно изменяются форма погруженной части корпуса, плечи остойчивости формы и восстанавливающие моменты.

Пребывание корабля на подошве волны сопровожда­ется увеличением восстанавливающих моментов. Пребыва­ние корабля (особенно длительное) на гребне волны опасно и может привести к опрокидыванию. Наиболее опасна резонансная качка, при которой период собствен­ных колебаний корабля T1,2 равен видимому (наблюдае­мому) периоду волны?" Характер бортовой резонансной качки показан на рис. 7.4. Как следует из рисунка, явление резонанса наблюдается при отношении 0,7 < T1 /τ" < 1,3

Особенно опасна резонансная качка при положении корабля лагом к волне.
При следовании корабля курсом против волны зна­чительно возрастают потери в скорости, происходят ого­ление оконечностей и резкие броски оборотов. Удары волн в днище носовой оконечности (явление «слемминга») могут привести к деформации корпуса и срыву от­дельных механизмов и устройств с фундаментов.

При следовании по волне корабль в меньшей степени подвержен ударам волн. Однако следование его по вол­не со скоростью, близкой к скорости волны VK = (0,6--1,4) С (корабль «оседлал» волну), приводит к резкой потере поперечной остойчивости в связи с изменением формы и площади действующей ватерлинии, а это ведет к возникновению гироскопического момента, действую­щего в плоскости ватерлинии и значительно ухудшаю­щего управляемость корабля.


Рис. 7.4. Резонансная качка

Наиболее опасно плавание малого корабля на попутном волнении, когда λ=L ко­рабля, а VK=C.

Универсальная диаграмма качки Ю.В. Ремеза

Универсальная диаграмма качки определяет зависи­мость наблюдаемых элементов волн от изменения элемен­тов движения корабля.

Диаграмма рассчитана по формуле

Где V - скорость корабля, уз.

Диаграмма определяет зависимость между X и V sin a при различных значениях т". Она построена относительно преобладающей системы волн, которая может быть выде­лена на любом волнении и оказывает наиболее сущест­венное влияние на качку корабля (§ 23.4). Уни­версальная диаграмма может быть использована только в районах с достаточно большими глубинами (более 0,4Х волны).

Применение универсальной диаграммы качки позво­ляет решить следующие основные задачи:
- определить курс и скорость, при которых корабль может попасть в положение резонансной качки (килевой и бортовой);

Определить длину волны в районе плавания;

Определить сектора курсов и диапазоны скоростей, при которых корабль будет испытывать сильную качку, близкую к резонансной;

Определить курсы и скорости, при которых корабль будет находиться в состоянии наиболее опасной пони­женной поперечной остойчивости;

Определить курсы и скорости, при которых ко­рабль будет испытывать явление «слеминга».

(1) Дальнейшее усиление ветра сопровождается ветровым волне­нием, снижающим скорость корабля.
(2) Координаты истинного ветра связаны с землей, а кажуще­гося с кораблем.
(3) Практически движение частиц воды ветрового волнения про­исходит по орбитам, близким по форме к окружности или эллипсу, Перемещается лишь профиль волны.
(4) Характер волнообразования и его связь с элементами ветра подробно рассматриваются в курсе океанографии.